

Secured Entrance System for Facilities

Final Project Report

Sahil Gupta

Avnish Kumar

ECE 4894 Embedded Computing Systems

School of Electrical and Computer Engineering

Date Submitted

12/03/2013

The secured entrance system for facilities is a consumer grade door lock security system under

which the person residing in the facility can authorize a visitor to enter the facility by putting in a

request in the database. The resident can use a java based application to enter the credentials of a

visitor in a MySQL database. Once a visitor has been entered in the database, that visitor is

allowed to enter the building for the following 10 minutes using an RFID tag. For our project, we

simulated the infrastructure of Georgia Institute of Technology. The Java application is used to

enter the visitor’s name and GT ID. The visitor can then use his/her GTID on a RFID reader,

which is connected to Arduino UNO. Arduino UNO parses the card to a tag, and checks the

database to see if any GTID in the visitor table has a matching tag. If it has a matching tag, the

Arduino UNO sends a signal to specify that the user can enter provided time limit is satisfied.

 For the entire project, Arduino UNO microcontroller was used. An Ethernet shield was

also connected to UNO to help UNO access the database. An RFID reader, which uses the

Wiegand standard was also connected to the digital pins of UNO. Overall, all the manufacturing

cost of this item is $86 ($51- Arduino UNO + Ethernet shield, and $35 for RFID reader). The

following figure shows the overall structure of the project:

The secured entrance system for facilities has two main modules. The software module contains

the database and the web application, whereas the hardware module contains the Arduino, its

Ethernet shield and the RFID reader. The class diagrams for the software module is below:

The class diagram for the hardware module is below:

The class diagram for the entire system is below:

The object diagram for the software module is below:

The object diagram for the hardware module is below:

The object diagram for the entire system is below:

The sequence of events in each module can be represented in the state diagram. The state

diagram of the login page is following:

The state diagram for the request page is following:

The sequence of events in the hardware module is following:

The state diagram for the entire system is following:

Testing

Both, the hardware module and the software module has been completely implemented and

tested. For the software module, the testing performed on the code primarily involved JUnit

Testing. The tests are written to check the connection with the database. Further, tests were also

written to check if the query to the database insert the request was being made.

Unit Tests:

Tests Applied to check the services such as database connection and correct insertion into the

database.

1. @Test//correct access should result in success as expected

DBTestUserExistence1();

2. @Test//correct access should result in success as expected

DBTestUserExistence2();

3. @Test//wrong password should throw an error as expected

DBTestUserExistence3();

4. @Test//wrong username should throw an error as expected

DBTestUserExistence4();

5. @Test//put request for a new visitor

DBTestInsertRequest1();

6. @Test//check that the count of tuples matches as expected

DBTestCount1();

Results from the unit tests:

The hardware module has four major components: connecting the Arduino to the RFID reader,

parsing the number from the RFID reader, connecting to the database using the shield and then

sending queries to the database. All of the four components can be individually tested. Initially,

the RFID reader’s connection was tested by writing a program that prints the binary of the

inputs. The RFID reader was consistently printing binary, hence showing that the RFID had a

stable connection with the Arduino.

For the second component, the Wiegand interface was understood and then the number was

parsed from binaries to an unsigned long. It was tested by comparing the number with the tag

written on the GTID. Multiple different RFID tags were tested and they all came out successful.

To test the third component of the hardware module, a confirmation message was printed on the

screen to tell whether the connection to database was successful or not. Finally, for the fourth

component, values were sent to the database through Arduino. These values were then monitored

in the database, to see if they were actually entered. They were tested by checking if the correct

values are being entered in the correct column.

Once both the hardware as well as the software component had been tested, the entire system

was tested by doing black box testing multiple times with different GTIDs.

Software Module Level Test Plan:

Black box testing:

Inputs to Login Page Outputs Example Input

Empty values for any of the

username, password, first name, last

name, GT ID and residence hall.

Information not entered

error

Not Applicable

Username is not a valid alpha-

numeric input

Invalid username value

type

Fhsdfu12!@#

GTID is not a 9 digit number Invalid GTID value

type error

Jbrrejkbt432

First name is not a proper

alphabetical string

Invalid first name value

type

SAHIL4324&%^

Last name is not a proper

alphabetical string

Invalid last name value

type

GUP34235!

Residence hall is not the three-letter

code for the hall.

Invalid residence hall

code value type.

DSHJA

Inputs to the Request

Page

Outputs Example Input

Empty values for any of the First Name,

Last Name and GTID

Information not

entered error

Not applicable

First name is not a proper alphabetical

string

Invalid first name

value type

SAHIL4324&%^

Last name is not a proper alphabetical

string

Invalid last name

value type

GUP34235!

GTID is not a 9 digit number Invalid GTID value

type error

Jbrrejkbt432

Clear Box testing:

Tests to check several paths/conditions in the loops:

Inputs to Login Page Outputs Example Input

Invalid username and password value Invalid credentials error Username -Ksmith4

Password – abcd123

When the user Kelly

Smith does not exist as a

member in Student table

in the database

Wrong GTID value entered Invalid GTID error 9043567276 when the

GTID does not exist in

DB

Wrong residence hall value entered Invalid residence hall

error

NSA when the hall should

be NAS

Correct username, password, first

name, last name, GT ID and residence

hall values.

Request Page Shown Not applicable

Inputs to Request Page Outputs Example Input

Invalid first name, last name or GT

ID value

Invalid information for

visitor

First Name – Kelly

Last Name – Smith

GTID - 4378943242

When the user does not

exist with such a name.

Valid first name, last name and GT

ID

Success Page

Shown/Database updates

the entry

Not applicable

Def-use test cases:

For Login Page:

Variable Definition Variable Assignment

public Resident

CurrentUser;

CurrentUser.setUserName(userNameTextField.getText());

CurrentUser.setPassword(passwordTextField.getText());

CurrentUser.setFirstName(FirstNameTextField.getText());

CurrentUser.setLastName(LastNameTextField.getText());

CurrentUser.setResidenceHall(ResidenceHallTextField.getText());

CurrentUser.setGTID(GTIDNumber);

Test if the user entered

everything correctly for

his/her/resident’s

information

If the user entered correctly, then the assignment to

CurrentUser/Resident should be correct as well. For instance, in login

page attempt getting in with user Sahil Gupta with username: sgupta23

and password: abc8; residence hall= NAN; GT ID = 902648052.

For Request Page:

Variable Definition Variable Assignment

VisitorRequest request; request.setGuestOfGTID(currentUser.getGTID());

request.setDateTimeIn(new BigDecimal(new

Long(System.currentTimeMillis()).toString()));

 request.setDateTimeOut(new BigDecimal(new

Long(System.currentTimeMillis() + 600000).toString()));

Test if the user entered

everything correctly for

the visitor’s information

If the user entered correctly, then the assignment to request/visitor should

be correct as well. For instance, in request page create a request for first

name and last name Eric Cart respectively, and GTID 902348523. This

assignment should happen correctly.

Hardware Module Test Plan

Black Box Testing Plan:

The Arduino module has only one input: tag number from the RFID (Student ID). When

someone uses their student ID on the RFID reader, the reader translates the RFID tag to a unique

number. For black box testing, we used different types of RFID to see if we get the result we

should be getting. The output in our case is different signals/lights we see on the RFID reader. A

red light indicates that the credential (the RFID tag) wasn’t correct and that the door can’t be

opened. A green light indicates that the credential (the RFID tag) was correct and that the

visitor/resident can enter the building.

Based on this, following are the black box tests that can be performed in the Arduino module:

a. Correct type of RFID tag (GT ID versus UGA (or some other kind) ID) – This test will

see if only the GTID is being interpreted and not any other kind of ID. This can be tested

by using different types of ID’s and seeing if the door signal turns green or red.

b. Test for Resident Tag – This black box test will test whether the door opens up for a

resident. The input in this case will be a valid ID of the resident of the building, and the

output should be that the door open signals should be true.

c. Test for Non-Resident Tag – This black box will test whether the door opens up for a

GTID who doesn’t belong to that residence hall. The input will be a valid ID of a non-

resident of that building, and the output should be that the door open signals should be

false.

d. Test for Active Visitor Tag – This black box test will test whether the door opens up for a

GTID of a student who is in the active visitor table for that residence hall. An active

visitor is a visitor who was added in the last 10 minutes (the time set during specification

for the visitor to enter the building). The output should be that the door open signals

should be true.

e. Test for In-Active Visitor Tag – This black box test will test whether the door opens up

for a GTID of a student who is not an active visitor for that residence hall anymore. This

student would have been an active visitor earlier and his access timed out (> 10 minutes).

The output should be that the door open signals should be false.

Clear Box Testing Plan

Following tests were performed to cover each path of the algorithm:

a) Check if no RFID tag is near the reader, if it is passing any values to the Arduino. If there

is no tag near the reader, the reader should not pass any value to the Arduino. This can be

tested by not having any tag near the reader and seeing if any value is passed to Ardunio.

This will test the following path in the state machine:

b) Check if Arduino sends a non-Georgia Tech ID for processing to see if it is a visitor or

resident. This can be tested by using a non-Georgia Tech ID and seeing the output. The

output should be a red LED. Following branch is being tested in this case:

c) Check if a non-resident Georgia Tech or an in-active visitor is let inside the residence.

This can be tested by using a non-resident tag and making sure the Red LED turns on.

This tests the following branch:

d) Check if a resident or a active visitor is let inside the building. This can be checked by

using GTID of a resident or an active visitor. The green LED should turn on. This test the

following branch:

Summary

A total of roughly 150 man hours were spent by the team of two for this project. Major changes

made since the last design cycle primarily involve the hardware module and database hosting.

Currently the database is being hosted on the local host due to networking issues we faced with

connecting the Arduino to the server hosted online on the internet. Hence, we had to change our

design strategy from client side processing on the Arduino UNO device to server side processing

on the local host server. In terms of the hardware module, Ethernet shield is not being used for its

intended purpose of connecting to the internet. Instead, we are using it to connect to the local

host which can also be done with some further work with the Arduino UNO module as well.

Technologically, we learned a lot about microcontrollers and how they work. We learned starting

from the basics of microcontrollers such as controlling a LED to a more advanced step of

connecting it to a database. From the software side, we had to learn Python, which was used for

server-side programming. We also honed our Java skills by making the front end application for

users. In attempts to connect to database, we also learned a lot about networks and what different

IP addresses mean. We also learned about Wiegand interface and how the Wiegand interface is

interpreted.

 Besides the technical knowledge we gained, we also learned how to properly plan out a

large project and the different steps involved in carrying out a project, starting from planning to

implementation and testing. We also learned about the various UML standards and how they can

be used to represent information.

