
MarkovDecision Processes (MDPs)
By Sahil Gupta

I. Abstract
Theoretical Expectations ofMDPAlgorithms
1. Our goal is to understand howMarkov Decision Processes “MDPs” can be applied for sequential decisionmaking to

determine actions that focus not just on immediate rewards, but also future rewards. Hence we’ll be exploringValue
Iteration & Policy Iteration (referred to as “VI” & “PI” respectively for brevity). For the third algorithm,Q Learning “QL” is used.

2. Out of curiosity, I also wrote custom VI, PI & QL solvers to solve the grid world problem using the algorithms from the
book “Reinforcement Learning: An Introduction”[1] written by Richard S. Sutton &AndrewG. Barto. This bookwill be heavily
referenced throughout this paper. I also leveragedHiiveMDP Toolbox for the continuous domain problem.

3. In this paper, trainingwill imply the process of executing anMDP algorithm to get an optimal policy & optimal value function
given states, actions & rewards. Testingwill mean using this optimal policy to run a fixed number of episodes and evaluating
this policies’ performance on the environment.

4. Let’s briefly summarize learnings from lectures & book[1] to compare theoretical expectations with empirical results:
a. Policy Iteration: Since we’ll be looking at finiteMDPs, PI is expected “to converge to an optimal policy and optimal value

function in a finite number of iterations.”[1] PI is expected to train faster than QL but slower that VI in terms of evaluation
time since it requires sweeping the entire state space multiple times (at least on harder problems). PI performs iterative
Policy Evaluation & Policy Improvement until convergence. PI is expected to take the lowest number of episodic iterations
(still slower) to converge. Another challenge PI is expected to run into is when there aremultiple optimal policies, PI
can run into infinite loops and needs a way to break ties or terminate early.

b. Value Iteration:VI is expected to converge the fastest on harder problems to an optimal policy in a finite number of
iterations. VI focuses on finding the optimal value function iteratively and requires only one policy extraction. This is
because an optimal value function yields an optimal policy.While VI can be faster on harder problems, it’s expected to
take more iterations than PI to converge. Moreover, VI uses the bellman operator & uses a non-linear max operation to
determine utility. Value is calculated using a one-step lookahead.

c. AReinforcement Learning Algorithm -Q-Learning: QL is a model free approach as the agent only discovers the
reward for transitioning from one state to another given an action & upon receiving a reward. Per lectures, “Q

learning rule is used to infinitely update where <s, a> approaches Q <s, a>, the solution to Bellman equation.”𝑄
^

Hence,QL is expected to require more significant parameter tuning (e.g. exploration-exploitation trade-off for epsilon,
learning factor alpha & discount factor gamma) and it’s expected to take much larger iterations to converge. Amajor
advantage of QL is that it can be easily applied to more real world scenarios since it learns by trial & error. PI & VI are
expected to do better on the grid world than QL because we know exactly how the rewards and state transitions are set
up. On the other hand, QL is expected to perform better on larger state space problemswhere the agent has no prior
knowledge of the world. From the book, “The action-value function effectively caches the results of all one-step-ahead

searches. In , the agent does not even have to do a one-step-ahead search: for any state s, it can simply find any𝑄
^

action that maximizes (s; a)”.Hence, QL is expected to perform better than VI though it takes manymore iterations to𝑄
^

learn.
Defining AndUnderstanding the Problems - Environments
Both the problems below have stochasticity due to the physics of the environments, have infinite horizons since the agent
continues to live forever after each iteration ends and have discrete number of iterations (unlike continuous timeMDPs).

5. Problem I: Frozen Lake fromOpenAI Gym[2]: This is a classical 2D grid world problem. In frozen lake, an agent controls
themovement of a character which starts off at a “Safe” starting point S on a lake but has to navigate through a course of
obstacles H (“holes” in the water) to reach the terminal state/“goal”G. Some “frozen” tiles F of the grid lake are walkable but
movement direction of the agent is uncertain and only partially (probabilistically) depends on the chosen direction.
The agent is rewarded for finding a walkable path to the goal tile. This problem is particularly interesting because of its
similarity to several real world applications such as autonomousmining, driving & lawnmowing, etc. Another popular
example is a Roomba vacuuming a floor in a homewhere it has to avoid obstacles to clean the floor and reach it’s charging
station (terminal state). In all these real world examples, several stochastic processes affect an agent’s path, similar to agent’s
movement on frozen tiles.

6. Problem II: ForestManagement fromMDPToolbox[3]: Forest management is a non grid domain problemwhere the goal
is “tomanage a forest standwith first the objective tomaintain an old forest for wildlife and second tomakemoney
selling cut wood. The forest stand is managed by two possible actions:Wait or Cut. An action is decided after each period t
with the first objective tomaintain an old forest for wildlife & second tomakemoney selling cut wood. Each year there is
a probability p that a fire burns the forest. States S are defined corresponding to the age-classes of trees from 0 (youngest) to
S-1 (oldest).” This problem is particularly interesting because of it’s real world application to manage vast forests & national
parks that face competing challenges - wildfires, wildlife preservation and logging. I live in California where forests have a high

probability of wildfires & understanding its effect onwildlife & logging is interesting. Moreover, this problem is a very
challenging bandit problem: “To solve this onemust decide the best sequential harvest over a finite period of time. This
problem becomes very interesting when themanagement involves a large amount of stands that are spatially linked.”[4]

II. Experimental Approach &Metrics Chosen
Metrics Used
During the training phase, the key metrics analyzed are evaluation time (seconds), number of iterations & number of errors
(penalties) across all 3 algorithms. For PI & VI, their Value/Utility functions are also studied. During the testing phase, each
trained output policy was put to test on the environment for 1000 test episodes. Test metrics calculated are average rewards
and average episodes. In the case of Q Learning, the test average penalty is also analyzed.

Experimental Approach
You are encouraged to follow along with the linked code if interested. This contains dozens of experimental-runs with images
and each future run is a subsequent improvement from past runs. More than 100 iterative experiments were conducted on a
large AWSGPU based instance (16 CPUs & 16 threads) each to truly get best results possible. Some experiments ran for
almost 20 hours each! The application is highly multi-threaded & parallelized.

Fig 1.Grid search was performed on each algorithm & on each
problem of varying sizes during training. Pseudo Validation
curve graphs were used to understand the effects of each hyper
parameter. Each policy was then compared after testing this
policy on the environment.Optimal policy is defined as one that
maximizes test average rewards (total rewards/number of test
episodes) for PI & VI. In QL, optimal policy was one that incurred
the least penalties/errors & had best train rewards. The average
test rewardsmetric was not chosen due to the reward
structure on environments. Finally, learning curves were plotted
to understand the effects of problem size onMDP performance.

III. GridWorld - Frozen Lake
Random frozenmaps were generated using gym.envs.toy_text.frozen_lake.generate_random_mapwith 20% holes.
As seen in Fig 2, it has the states: a starting point (yellow), frozen tiles (green), holes (red) & goal (green). The agent starts on
the starting point & performs actions - "Left", "Down", "Right", "Up" to reach terminal state. During each action, the
probability of action actually working is only 0.33 i.e. say the action is down, then there is 0.33 chance agent goes down, 0.33
chance it goes left & 0.33 chance it goes right! The reward for reaching the goal is 1 and zero otherwise. The problem sizes are
varied from [4, 10, 15, 20, 25, 30]. Though, only sizes 4x4 (easy - 16 states) & 30x30 (hard - 900 states) will be discussed. Due to
30x30 large size, it can’t be visually shown in Figure 2.

Optimal Policy Visualizations
The figure below shows the final optimal policies obtained after running grid search and selecting “best” policy. All these
policies below shouldmake sense visually.When the agent is near a red hole, it’s usually rewarded to not fall in it & hence acts in a
direction opposite from going towards the hole. When on frozen tiles, arrows are usually directing the agent towards the
terminal state green. Empirically, PI & VI produced the same optimal policies for all sizes (some not shown for brevity)! Per
Sutton & Barto, “Value iteration effectively combines one sweep of policy evaluation & one sweep of policy improvement. In general,
the entire class of PI algorithms can be thought of as a sequence of sweeps. Because max operation in VI is the only difference
between these updates.” Hence, VI is similar to PI except for these structural differences mentioned.QL hadminor differences in
optimal policy and reasonably so because it’s a model free learner (transition model & rewards are not known to the agent) learning
through trial & error. It has to learn each state by observing <<State, Action>, Q>.

Fig 2a. Optimal Policy Using PI Fig 2b. Optimal Policy Using VI Fig 2c. Optimal Policy UsingQL

https://drive.google.com/file/d/1e0RKVjamtIloiCr4tsKZ_aacLIzwlVAB/view?usp=sharing

Fig 2d. PI & VI lead to same policies (Both
have Gamma = 0.99 & Theta = 1e-7) as:

Fig 2e. QL leads to slightly different
optimal policy on a 10x10 grid as:

Fig 2f. QL stops converging for grids
including & over 15x15 even after 1e7
iterations (almost 3.5 hours grid search!).

Convergence Plots
Figure 3 below shows utility or value function convergence plots vs number of iterations for Frozen lake 4x4 as seen in Fig 2
above. As expected,we see PI finish in mere 3 iterations. VI takes 500 iterations, but convergence to optimal utility (or policy)
starts to occur around the 150 iteration mark. These empirical results match our expectations!Here are some unique findings:
1. See the flat blue dotted overlapping lines on x-axis. These are states with red holes (S5, S7, S11, S12) with utility 0.
2. The yellow dashed line S14 has the highest utility! This is because it’s the only entry point to the goal state (green).
3. The green dotted “All Mean V” line represents the combinedmean utility of all states. Notice the brown dashed-dotted

state S6 line that has the lowest non-zero utility. This is because S6 frozen tile is between two red holes S5 & S7 that increase
the likelihood of the agent falling into these holes!

Frozen lake 30x30 has amuch smoother convergence graph for PI & here PI takes 7 iterations while VI takes ~440 iterations.
VI’s & PI’s test average reward is 0.834 i.e. 83.4% chance & 0.838 i.e. 83.8% chance respectively that the agent reaches the goal.
Their performance in test is comparable though PI does slightly better. QLearning convergence graph can be seen below in
Figure 4 for frozen lake 4x4.We can see convergence around ~35000 iterations.On 30x30, QL never converges due to the reward
structure setup i.e. episodic reward of 0 or 1 isn’t ideal for QLearning. It performs the worst on hard problems and never converges
even after extensive tuning. A key thing to note is thatQLearning surprisingly performs the best on small problem 4x4with average
test reward of 0.88 i.e. it 88% chance agent reaches the goal.Also,QLearning suffered the most from stochasticity - its results &
performance varied significantly across experiments.

Fig 3.Utility vs Iterations for PI & VI for 4x4 & 30x30 frozen lakes. 4x4 is broken down per state to show detailed insights.

Fig 4.MeanUtility vs Number of Iterations for QL for frozen lake 4x4. 30x30 is not shown because it was unable to
converge and doesn’t show anythingmeaningful except poor performance. Reasons for no convergence with Q-learning are
discussed in Part V in great detail.

Parameter Tuning - Grid Search & “Validation Curves”
To understand howwe arrived at the results, it’s important to see the extensive tuning performed on each algorithm and
effect of each parameter on results.We’ll be discussing exploration-exploitation strategies and how they affect the results.

"iterative_gamma_discount_factors":
[0.5,0.7,0.9,0.95, 0.99,0.999],
"thetas": [1e-3, 1e-5, 1e-7, 1e-9]

"q_learning_gamma_discount_factors": [0.7,0.9,0.95,0.99,0.999],
"alpha_learning_rates": [1e-6, 1e-3, 1e-2, 0.1, 0.3],
"epsilons_exploration_exploitation": [1e-3, 1e-2, 1e-1],
"epsilon_decay_rate": [1e-6, 1e-2],
"total_episodes": [1e4, 1e5, 1e6, 1e7]

Above are the ranges of parameters explored via the Grid search and validation curves. Figures 5a, 5b, 5c below talk about PI
& VI parameters and their effect on learner performance.

Fig 5a. Mean Test Rewards vs Discount Rate (Gamma) can
be seen. Both PI & VI behave similarly (PI is shown due to
brevity). Larger discount factor means larger horizons & long
term focus. Hence, on frozen lake - long term rewards lead to
better test rewards than agent focusing on short term horizon.

Fig 5b. Mean Train Evaluation vs Log(Theta) can be seen. PI
& VI behave similarly (VI shown due to brevity). Theta is a
small threshold used to determine the accuracy of estimation.
Hence, smaller theta takes significantly longer to train because
more iterations are needed to reach larger accuracy.

Fig 5c. Large discount factors produce best policies but take
very long time to train. E.g. Gamma=0.9meant PI took 400s
mean & 800smax! VI (not shown) also saw an exponential
increase with Gamma>0.9. E.g. 25s with Gamma=0.999.

Fig 5d. Q-Learning Tuning for Learning Rate (alpha) on 4x4.
Per lectures, “alpha=0means no learning and alpha=1means
full learning i.e. we forget everything that we knew and jumped
to new value.” It’s clear that smaller alpha values are preferred.

Fig 5e. Q-Learning Tuning for Discount Rate (gamma) on
4x4. Same as VI & PI, higher gamma leads to better
performance but consumesmore evaluation time (not
shown). Though, we see an interesting pattern here of reduced
returns as gamma is increased further (inverted U shape).

Fig 5f. Q-Learning Tuning for Epsilon on 4x4. Per lectures,
“epsilon is probability of taking a random action (exploration)
instead of best action (exploitation).” It’s evident empirically
that smaller epsilon values are preferred by the agent on the
frozen lake example as 1E-3 leads to amuch better policy
than 1E-1 epsilon.

QLearning Exploration & Exploitation Strategies & Trade-off
Per lectures, “In exploration-exploitation, exploitation is about using what you know i.e. -> (pi-hat approaches pi i.e. optimalΠ

^
Π

policy) & exploration is about getting the data that you need so that you learn i.e. ->Q (Q-hat approaches Q).Using GLIE i.e.𝑄
^

greedy in the limit with infinite exploration i.e.we decay our epsilon greedily.” Here, epsilon is decayed from epsilon=1 to
epsilon=0.01.

Fig 6. Table summarizes the performance of 2
strategies on Frozen lake. Onewhere epsilon is
decayed greedily and one where epsilon was kept the
same per training & testing round but tested for
different epsilons - [1e-3, 1e-2, 1e-1] (as seen above in
Fig 5f). It’s clear that a decay strategy will do better for
harder problems but static epsilon (no decay) can perform
well on easier problems depending on parameter
selection & tuning.

IV. Continuous Domain - ForestManagement
Random ForestManagementmaps were generated using hiive.mdptoolbox.example.forest(S=num_states,
r1=oldest_wait_reward, r2=oldest_cut_reward, p=wildfire_probability)with varying number of states. The
rewardwhen the forest is in its oldest state and action is 'Wait' was set to 4 & the rewardwhen the forest is in its oldest state
and action is 'Cut' was set to 2. The stochasticity here is due to the probability of forest fires which is set to 0.1 i.e. there is
10% chance that a wildfire occurs and leaves the forest stand at the youngest age class or state. The problem sizes are varied
from [25, 100, 225, 400, 625]. Though, only sizes with 20 states (easy) & 625 states (hard) will be discussed. In thisMDP, the
environment provides a transition probability array P (A x S x S’) & reward array R (S x A).

Optimal Policy Visualizations
Since this is a non-grid world problem, it’s not straightforward to visualize these in a 2-D picture. Below is a heat-mapwhich
shows the output policies here by each algorithm for 25 & 625 state forest stands & the output actions proposed by these
policies. Optimal output policies were selected using the same experimental grid search approach discussed in Part II. Young
trees are coded green & older trees are encoded yellow-orange. Actions proposed - wait=0 are encoded green and cut=1 are
encoded red. Same as the frozen lake grid world,we can see that VI & PI produce the same (similar) policies.QL had several
differences in optimal policy as before. We can see that for younger states, PI, VI & QL all recommend “Cut” but for older states, QL
recommends action as “Cut” while VI & PI say “Wait”.Moreover, on the harder problem, there is even more difference between policy
generated by QL vs PI & VI. This is unsurprising because again QLearning reinforcement learning technique is model free and using
trial & error. It may or may not have converged at forest stand size=625. Let’s investigate this in the next section in greater detail.

Fig 7. Optimal Policy visualizations that maximized test average rewards for # of states 25 (first two) & 625 (last two).

PI
&
VI
(25)

QL
(25)

PI
&
VI
(625)

QL
(625)

Convergence Plots
Figure 8 below shows the convergence plots for all 3 algorithms forMean V (utility) vs Number of Iterations. PI & VI

converged very quickly as expected because they exploit the knownmodel. For forest stand size=25, VI’s & PI’s test average
reward is 1.1627 & 1.1671 respectively. Their performance in test is comparable though PI does slightly better (same as frozen
lake). PI & VI convergence graphs for forest management stand of size=625 are not shown here because they have very
similar graphical patterns to size=25 & surprisingly take the same number of iterations (also omitted due to brevity).

Per Fig 8c., QL took almost 10million iterations to converge (it took 1.5 hrs to run or 5,400 seconds to evaluate this
policy)! For single agent QL, forest stands greater than 50 states and above couldn’t converge in under 1e7 iterations even
after extensive grid search onmore than 30 different parameter combinations. This is unsurprising because evenwith
multi-agent QL, INRA’s Chades` & Bouteiller[4] conclude the challenges in QL algorithm convergence on forest management
problem. Part V below discusses QL time complexity in greater detail. CompareQL convergence graph Fig 8c. for forest
stand of size=25with Fig 8d. with forest stand of size=625. Again, a key thing to note is thatQLearning surprisingly performs
the best on small forest stand size=25with average test reward of1.4683 i.e. almost 1.3 times more than PI & VI! It’s also
important to point out that while QL didn’t converge at size=625 (Fig 8d.), it still did a lot better than on frozen lake (where it got 0
average test rewards after 1e5 iterations).At size=625, it got 0.819 test average rewards in comparison to 1.005 & 1.006 test
average rewards for PI & VI respectively. This implies that if the number of episodic iterations was bumped to say 1e8 or 10
timesmore, wemay have seen convergence. Of course, this may have taken several days to train (beyond the scope). This is
also evidenced in the figures 8e & 8f where “QL Rolling Reward Sum/Iterations vs # of Iterations” has been plotted to explain
convergence behavior for QL on easy vs hard problems.

Fig 8a. PI Mean V vs # Iterations (size=25). Notice that PI
converges in least # of iterations here to the optimal utility
function i.e. a mere 8 iterations.

Fig 8b. VIMean V vs # Iterations (size=25).VI which takes ~50
iterations to converge. Note thatMean V y-axis scales in VI & PI
are similar.

Fig 8c. QLMean V vs # Iterations (size=25). Note x-axis is
actually in 1e3 scale i.e. goes from 1e3 to 1e7 iterations.QL
takes the longest # of iterations to converge as expected.

Fig 8d. QLMean V vs # Iterations (size=625). It shows thatQL
never converges here even after 10million iterations & 1.5 hrs
evaluation time.

Fig 8e. QL Rolling Reward Sum/Iterations vs # Iterations
(size=25) shows thatwithin 2e6 iterations, QL achievedmost
of its rewards (rate of acquiring “rewards/iteration” reduced)

Fig 8f. QL Rolling Reward Sum/Iterations vs # Iterations
(size=625) shows that even after 1e7 iterations, QL was still
learning & getting more rewards.

Parameter Tuning
Grid Search & “Validation Curves”

Same as frozen lake, extensive parameter tuning was performed on ForestManagement.We can see the similarity in tuning
between Reinforcement Learning/MDP& Supervised learning tuning processes where comparing training & testing results is
crucial for model complexity/validation curve analysis. Note that tuning results for forest stand=625 are not shown due to
brevity but similar tuning was performed on it. Below are some interesting insights for forest stand=25:

1. VI/PI Tuning: Compare Figures 9a & 9bwhich showRewards vs Iterations in Training & Average Test Rewards vs
Discount rate respectively. These showcase Discount Factor tuning results for VI only (PI has similar graphs and
hence not shown).We see that during training Gamma=0.999 (brown line) leads to highest rewards over iterations.
Though during testing, mean test rewards are significantly lower for Gamma=0.999. In fact, Gamma=0.7 led to best
performance during testing. Per lectures: “smaller gammameans shorter horizon i.e. short term focus. This means that
we value short term rewardsmore and are encouraged to get as many and quick rewards as possible even though
long term rewardsmay be large.Hence, Gamma=0.7 shows that short term rewards are favored in Forest Management
when compared to Frozen Lake where larger Gamma>0.99 was preferred. While not shown, similar results were seen
for Q-learning too (Gamma=0.7 was chosen for QL).

2. Q-learning Tuning: Compare Fig 9c & 9dwhich showRewards vs Iterations in Training & Average Test Rewards vs
Discount rate respectively. These showcase Learning Rate (alpha) tuning results for QL only.We see that during
training & testing Alpha=0.01 led to best performance. Here, the train & test results are similar.

A Short Note on Q-Learning Exploration & Exploitation Strategies & Trade-off

Compare Fig 9e & 9f which show the 2 exploration-exploitation strategies applied on forest management.We can see that a
decaying epsilon exploration strategy from epsilon=1 to 0.1 with decay rate=1e-2 performs slightly better than keeping epsilon the
same throughout the training round. Again, epsilon is the probability of taking a random action (exploration).Higher epsilon
values lead to more exploration. In Figure 9f, it’s clear that higher epsilon values (1e-2, 0.1, 0.3, 0.5) are preferred i.e. more
exploration is ideal.

Fig 9a. (VI Tuning Gamma) Training Rewards vs # Iterations. Fig 9b. Average Test Rewards vs Discount Rate for VI.

Fig 9c. Training Rewards vs Number of Iterations for QL. Fig 9d. Average Test Rewards vs Learning Rate for QL.

Fig 9e. Q-Learning Test Average Reward vs Epsilon Decay
Rate.Here, the epsilon decay strategy with varying decay rates
is applied with max_epsilon=1 andmin_epsilon=1 (defaults in
MDPToolbox).

Fig 9f. Q-Learning Test Average Reward vs Epsilon.Here, the
epsilon is kept the same throughout the train & test round per
parameter combination (no decay). Several combinations for
epsilon are tried: [1e-6, 1e-3, 1e-2, 0.1, 0.3, 0.5].

V. DeepDive on Varying Problem Sizes - Pseudo “Learning Curves”
Train Time Complexity
Tomake sense of training times, let’s analyze the time complexity of algorithms in greater detail.Worst case time complexity of

PI[5] is given by [5], VI[6] is given by &QL[7] is given by where S is the cardinality of the state set, A is𝑂(|𝑆|3 + |𝑆|2|𝐴|) 𝑂(|𝑆|2|𝐴|) 𝑂(𝑛3)
the cardinality of the action set, n is the number of steps needed to reach the goal state (convergence). These equations imply that:

1. For larger state sets, PI will outweigh run times for VI (by). This is exactly the behavior we see in frozen lake (Fig 10a)|𝑆|3

where PI overtakes VI’s run time on harder problems. Same is true for the ForestManagement problem (Fig 10b). Frozen
lake has 4 actions while forest management below has only 2 actions.

2. PI’s & VI’s growth is linear to the action set’s cardinality growth. Frozen lake has 4 actions while forest management has 2
actions. Not only does PI take significantly longer than VI as size increases, but this growth linearity also explains the
difference in curves among the frozen lake (widening curve between PI & VI as state size grows - Fig 10a) & forest
management (shortening curve between PI & VI as state size grows - Fig 10b).

3. For Q-learning, as the number of episodes/iterations increase, time cost becomes extremely high due to cubic n steps.
Now, let’s look at concrete numbers:
1. In Fig. 10a, Frozen lake 4x4 - PI takes 0.328s to train, VI takes 2.161s &QL takes 1611.62 seconds to train i.e. almost 800

times longer than VI! On frozen lake 30x30, PI takes 149.67s to train, VI takes 52.37s &QL takes 457 seconds to train.We
see PI take almost 3 times longer than VI.

2. In Fig. 10b, for Forest Management stand=625 - PI takes 22.5s while VI takes a mere 0.4s to train 50 iterations i.e. PI takes 55
times longer. This behavior of PI taking significantly longer than VI is the same as frozen lake. This is likely because
maximization over action set in forest management is costly. Since, VI does this max over a smaller action set in forest
management, it’s faster than VI in frozen lake when PI is taken as a baseline.

3. QL takes a long time to converge and is shown on different graphs. For Frozen lake,QL takes shorter time on 30x30 in
comparison to 4x4 because there is no learning occurring as it never gets any reward & agent drops into a hole early as size
becomes large. This leads toQ-table on 30x30 set to all 0 (as updates never happen). In ForestManagement, size=25
takes 5000s & size=625 takes 6100s. Here, even as size increases, the agent learns & performswell (is learning and
henceQ-hat approaches Q).

Fig 10a. Training Time (s) vs Varying Frozen Lake sizes. Fig 10b. Training Time (s) vs Varying Forest Stand sizes.

Average Test Rewards Performance

Fig 11a. Average Test Rewards vs Varying Frozen Lake sizes. Fig 11b. Average Test Rewards vs Varying Forest sizes.

Figure 11a & 11b show performance in test for each algorithm on Frozen lake and Forest management respectively. It’s clear
from both the graphs that VI & PI have comparable performance i.e. their output policies are either the same or similar such that
running episodic tests on them yields the same results as sizes even as problem size is varied. In Frozen lake (Fig 11a), PI
performsmarginally better than VI (that might be due to stochasticity) and in ForestManagement (Fig 11b), PI & VI deliver
the same results across all sizes as evidenced by overlapping orange and blue lines. As we saw before, Q-Learning does really
well on easy problems and even better than PI & VI. Unfortunately, on problemswith large state set cardinality, QL doesn’t
perform as well as PI & VI. Though, it’s clear that it’s not too far behind PI & VI and its performance is within 20%margin.

Q-Learning Performance &Convergence Analysis

Per lectures: “Q learning rule is used to infinitely update where <s, a> approaches Q <s, a>”. This means that givenmore (or𝑄
^

infinite) computational time, it’ll approach trueQ function. In larger Frozen lake grids, the agent only gets a reward of 1 when
it reaches the goal.Hence, as the grid becomes larger and due to significant stochasticity of slipping (only 33% chance of action
actually working), it becomes impossible for Q-learning to get rewards in training and test without slipping into a hole because it’s
model free and doesn’t know of state transitions <T, R>.Of course, we could’ve easily customized the environment to have a
different reward structure andQ-learning would’ve converged faster/earlier - say give 1 reward to every action where it
stays alive and 0 for everything else. But, this lack of convergence helped show the stark contrast between Frozen lake and Forest
Management problems! Forest management’s reward structure is more conducive for Q-learning to performwell.

VI. Conclusion
It’s evident that trade-offs matter when it comes to selecting the rightMDP algorithm. The heat map below shows a

detailed comparison of all 3 algorithms:

Green highlights superior performance, yellow highlights decent tomanageable performance and red implies poor
performance. Policy Iteration & Value Iteration are model based learners that assume the model is given to them. Often, in the
real world these are unknown and hence, PI & VI can’t be applied in those cases. Though, for the 2MDP problems - grid based
Frozen lake & non-grid Forest management, PI & VI perform really well. Policy Iteration was a clear winner on several fronts -
fastest convergence in terms of # iterations, good test performance on easy problems and hard forest management problem.Value
Iteration, while, slower than PI to converge in terms of # of iterations, is the fastest to train on hard problems and the best performer
in terms of average test rewards on hard problems.

On the other spectrum,Q-learning is a model free learner. This reinforcement learning algorithm can be applied even when
transition probabilities and rewards are unknown! In both the examples, wewere lucky to be given transition probabilities and
rewards. Surprisingly,Q-Learning with a single agent performed the best on easier problems in terms of test average rewards and
beat VI & PI. Unfortunately, on both easy & hard problems it’s train evaluation time is very long. On harder problems, it performs
poorly - “model-free algorithms suffer from a higher complexity compared tomodel-based approaches”[8]. It can be
empirically shown that amulti-agent Q-learner can effectively solve harderMDP problems[4] (givenmore time, this
techniquewould’ve been explored). Moreover,model-free algorithms like Q-Learning “are online, require less space, and, most
importantly, are more expressive since specifying the value functions or policies is oftenmore flexible than specifying themodel
for the environment - arguably outweigh its cons relative to model-based approaches.”[8]

To conclude, the choice of algorithm depends on the environment given, sample complexity, whether model is known
vs unknown, computational complexity & train time availability, etc. to name a few. Finally, it’s clear that empirical results
closely match all the theoretical expectations that werementioned in the introduction.

VII. Citations
[1] Richard S. Sutton &AndrewG. Barto, “Reinforcement Learning: An Introduction” [E-Book]
[2] Open AI Gym, “FrozenLake-v0” [URI]
[3] INRA, “Markov Decision Process (MDP) Toolbox” [URI]
[4] Iadine Chades & Bertrand Bouteiller, “SolvingMultiagentMDP: A ForestManagement Example” [URI]
[5] YishayMansour, Satinder Singh, “On the Complexity of Policy Iteration” [URI]
[6] StackOverflow, “Time Complexity of Value Iteration” [URI]
[7] Sven Koenig and Reid G. Simmons, “Complexity Analysis of Real-Time Reinforcement Learning?” [URI]
[8]Microsoft, UCB, “Is Q-learning Provably Efficient?” [URI]

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
http://gym.openai.com/envs/FrozenLake-v0/
https://miat.inrae.fr/MDPtoolbox/QuickStart.pdf
https://www.mssanz.org.au/modsim05/papers/chades.pdf
https://arxiv.org/ftp/arxiv/papers/1301/1301.6718.pdf
https://ai.stackexchange.com/questions/9019/what-is-the-time-complexity-of-the-value-iteration-algorithm
http://idm-lab.org/bib/abstracts/papers/aaai93.pdf
https://papers.nips.cc/paper/2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf

