

Design Report: Karaoke Machine implemented on the
DE2 Board Using SCOMP and the Wolfson Audio

Codec

Patrick Dillon
Sahil Gupta

Eric Patterson
Josh Stirnemann

Prahlad Venkatesh

ECE 2031, Digital Design Lab
Section L06
Spring 2012

Submitted
24 April 2012

Georgia Institute of Technology
School of Electrical and Computer Engineering

Executive Summary

This report describes the solution for implementing a karaoke machine using a simple computer

(SCOMP), Wolfson WM8731 audio codec and an I2C controller on a DE2 board. I2C controller was

written in VHDL which helped in managing the data between SCOMP, the audio codec and several other

peripheral devices. For this project, the seven peripheral devices used were switches, pushbuttons, LEDs,

LCD screen, microphone, speaker and an iPod. I2C controller sends two bytes of data when writing and

receives one byte of data when reading. It sends 8-bit commands to any 7-bit addresses on I2C bus. It

responds to the in and out commands of the SCOMP. An assembly program was written and downloaded

to the DE2 board to control the audio codec and all the peripheral devices. This assembly program

consisted of four main states, namely, AudioInit, HandleButtons, HandleSwitches, and HandleState.

AudioInit takes care of the initializing the settings of the audio codec, HandleButtons and

HandleSwitches manage the user response of the pushbuttons and the switches respectively, and

HandleState ensures correct transition between the states. This execution provides a robust design that

allows the user to easily communicate to other I2C enabled devices for future enhancements. The future

work which the team wants to do with the current project includes ideas such as integrating the video

codec to display the song lyrics and visual backgrounds, adding clock synchronization and playing music

from a memory card or USB storage. Moreover, the main advantage of this implementation is

discretization of fades and preventing the blocking of the user. It also allows state transition to stop in the

middle of the fade. The design met all the requirements of the project and was very successful during the

demonstration.

Design Report: Karaoke Machine implemented on the
DE2 Board Using SCOMP and the Wolfson Audio

Codec

1.0 Introduction

This report explains a solution to the implementation of a karaoke machine on the DE2 board using the

I2C controller, the SCOMP and the audio codec. The I2C controller and the SCOMP were written in

VHDL and downloaded to the DE2 board. The I2C controller facilitates data exchange between the

SCOMP and the audio codec. The audio codec and all the peripheral devices were controlled by an

assembly program downloaded to the DE2 board.

1.1 Problem Description

The goal of this project is to design a general-purpose I2C controller with a standard Simple

Computer (SCOMP) I/O interface and to establish communication between the SCOMP and the Wolfson

WM8731 audio codec. The following were the requirements to achieve the project goal:

1.1.1 I2C Controller

• Responds to standard I/O commands (IN, OUT) at one or more IO address beginning at 0x10.

• Sends arbitrary 8-bit commands to arbitrary 7-bit addresses on the I2C bus.

• Sends write commands from the SCOMP.

• Reads and relays a response from the SCOMP to the I2C enabled device.

1.1.2 Audio Codec

• The I2C controller should communicate with the audio codec chip on the DE2 board midway

through the project.

• Develop a user interface using several peripheral devices on the DE2 board such as seven

segment displays, LCD screen, LEDs, pushbuttons, etc.

• Create a demonstration SCOMP program using assembly to achieve the above requirements.

• Develop a specific application of the audio codec to meet all the requirements.

1.2 Design Solution

To meet all the above requirements, the team decided to design a karaoke machine on the DE2

board. I2C controller sends two bytes of data when writing and receives one byte of data when reading. It

sends 8-bit commands to any 7-bit addresses on I2C bus. It responds to the in and out commands of the

SCOMP. For this project, the seven peripheral devices used were switches, pushbuttons, LEDs, LCD

screen, microphone, speaker and an iPod. An assembly program was written and downloaded to the DE2

board to control the audio codec and all the peripheral devices. This assembly program consisted of four

main states, namely, AudioInit, HandleButtons, HandleSwitches, and HandleState. AudioInit takes care

of the initialization of the settings of the audio codec, HandleButtons and HandleSwitches manage the

user response of the pushbuttons and the switches respectively, and HandleState ensures correct transition

between the states.

The design met all the requirements of the project and was very successful during the

demonstration.

The controller will regulate the information being passed between the SCOMP and the I2C

enabled device by using two subroutines, an audio codec and I2C controller driver, which will handle the

address and the different functionalities of each device. The I2C controller will initially start in an ideal

state. Once the controller receives a valid data string, it will decide to go into a sending or receiving state.

When the data transfer is complete, the SCOMP will give instructions to send the information to the audio

codec over the SDA (serial data line). With the SCOMP being the master control device, the speed of the

SCL (serial clock line) is dependent on the initial clock value defined in the SCOMP.

Technical Approach

Proposed Overall Design

To fulfill the goal of the project, several design phases were created to ensure the completion of

each requirement. The team aims to complete a phase prior to moving forward in the design process.

These phases are implemented to yield a highly efficient design; as a result, debugging and executing

each design phase will be easier and independent of other phases. Because a team member is responsible

for the completion of a design phase, the project progression will be optimized due to the minimization of

duplicated work.

The karaoke machine will be implemented by using the I2C controller as the means of

communication between several peripheral devices (LEDs, switches, and push buttons), the SCOMP

programmed in the DE2 board, and the Wolfson WM8731 audio codec integrated on the DE2 board.

Figure 1 provides a graphical representation of the karaoke machine the team will design.

 Figure 1. The setup of the karaoke machine with all the connections between devices shown.

In the port declaration of I2C_Controller.vhd, three standard logic inputs are included to

distinguish different words sent over the I/O data bus. These input ports are three individual chip selects,

which are utilized by the I2C controller for managing state machine transitions and driving the tri-state

buffer. Integer counting within the controller will keep track of the number of bits sent over the I2C bus.

The I2C addresses are seven bit and the data will be sent in one byte.

I2C Controller Design

For the development of the I2C controller, an Altera DE2 board will be programmed with the

Quartus II Web Edition software version 9.1 with SP2. The logic and states of the I2C controller will be

written in VHDL due to its compatibility with the Quartus software. This involves the creation of two

state machines - one for the SCOMP to I2C interface and one that sends data over the I2C bus.

By default, the I2C controller is in an idle state. Therefore, it waits for the address of an I2C

device to communicate with. The I2C controller enters the sending or receiving state of the state machine

depending on whether the eighth bit of the address is a zero (write) or one (read). In the ‘sending’ state,

the I2C controller waits to send data. If SCL and SDA are both one, it starts sending a byte and in the next

clock cycle, transitions to a send bit state where it will stay for the next seven cycles. After eight bits have

been transferred, it waits for an acknowledge (ACK) from the slave. If the ACK is received, then the state

machine will start transferring the next byte. If there are no bytes left to send, it will send the stop

sequence, and the I2C controller will return to the idle state. If the ACK is not received, then it will

transition back to start sending the byte without proceeding to the next byte to be sent.

If the I2C controller receives a one as the eighth bit of the address in the idle state, then it goes to

the ‘receiving’ part of the state machine. In this state, the process is similar to that in the ‘sending’ part of

the state machine. The I2C controller start by sending the address of the I2C requested device over the

SDL. Then, it loops while receiving 8 bits from the slave, while controlling the clock. Once an entire byte

is received, the I2C controller will pull the SDA low to acknowledge that the byte was received. Finally,

the I2C controller sends the stop sequence and stores the received byte in a register to be retrieved by

SCOMP using IN I2C_DATA and transitions to the idle state.

Interaction with Audio Codec

The I2C controller has two bidirectional lines, the Serial Data Line and the Serial Clock Line that

are connected to the audio codec.

For this part, the plan is to create a karaoke machine that receives music from a MP3 player. This task

will be achieved by the usage of the three jacks in the audio codec on the DE2 board, i.e., the line-in, line-

out, and mic-in jacks. The line-in jack will be used as an interface between the MP3 player and the audio

codec. The mic-in jack will be used to send the input of human voice inputs by means of a microphone.

The line-out jack will be used to connect the audio codec to the speakers, so as to have an output for the

sound. There are also pushbuttons that send a signal to reset the sound. Additionally, there is a digital to

analog and analog to digital converter present in the audio codec that will allow for automatic conversion

into the desired format.

The objective is to be able to communicate with the audio codec, i.e., prompt it to start using the

I2C controller. This start state will be accomplished by determining the address of the audio codec and

finding a specific command to set it running from the I2C controller. Afterwards, the team plans to

program the LEDs and the switches in a way that they can have some sort of impact on the output volume

by utilizing a subroutine. In the subroutine, the use of commands will enable the manipulation of the

output volume like ‘increase volume’, ‘decrease volume’, ‘mute’, etc.

 Figure 2. I/O subsystem showing interconnection of audio codec with I2C.

SCOMP Program Demonstration

The functionality of the I2C controller will be shown through the demonstration of a karaoke

machine. As mentioned before, this karaoke machine will require a user to attach a microphone, speaker,

and a music player. In the initial state, the karaoke machine will set the volume of the audio output to

zero, waiting for the user to press a button (KEY [0]) before fading-in the volume to 50%. Pressing that

button again will fade the volume back down to 0. The buttons will be checked via polling their

respective I/O addresses and will be performed continuously in between sending commands to the audio

codec. Commands will be sent to the audio codec using two sets of subroutines. The first set of

subroutines is the audio codec driver. This driver manages the audio codec’s address and the different

functions that can be performed by the audio codec. In order to communicate with the audio codec, the

audio codec driver will use a set of subroutines, which compose the I2C controller driver. The I2C

controller driver consists of the I2C controller’s I/O address, which is a command to set the target I2C

device address, and commands, which perform a send or receive on the I2C controller. The I2C controller

then transfers or requests the corresponding data using the SDA and SCL lines on the I2C bus.

For the I2C_WRITE subroutine, the accumulator is expected to contain the data that needs to be

sent, and a specific location in memory is expected to hold the address of the I2C device to send the data

to. The I2C_WRITE subroutine starts by storing the data it needs to send. It then loads the address of the

I2C device, sets the write bit, and sends the address to the I2C controller using OUT I2C_ADDR. Next,

the subroutine loads the data to send back into the accumulator and executes OUT I2C_DATA. Finally, it

enters a loop, where it waits for IN I2C_TEST to input 0 into the accumulator before returning.

The I2C_READ subroutine expects the address of the I2C device be in the accumulator. It starts by

sending the address to the I2C controller using OUT I2C_ADDR. It then waits, by checking if IN

I2C_TEST sets the accumulator to 0, for the I2C controller to enter the IDLE state which means the data

has been sent successfully before returning.

Management Plan

Appendix A contains a Gantt chart that provides a visual representation of the team’s project

schedule.

Contingency Plan

In the event that the I2C controller needs to be able to enter a slave mode, the I2C controller’s

state machine will be adapted to contain a slave state, where it will buffer any incoming data and operate

based on the clock the master device drives over the SCL. Once the buffer is full, the I2C controller will

stretch the clock by holding SCL low until SCOMP has received the data using the assembly instruction

IN I2C_CONTROLLER. If the option to request that a byte be resent is desired, then it will be

unnecessary for the I2C controller to have a buffer. After receiving a byte, the I2C controller would stretch

the clock either before or after the master pulses the SCL to read the ACK. The I2C controller has no

ability to check whether the data received is correct, so it would have to wait for the assembly to read in

the data received over the I2C bus, check the data, and send a new command, OUT I2C_ACK, back to the

I2C controller. The OUT I2C_ACK command sends the value in the accumulator to the I2C controller and

would be expected to be 1 for acknowledge and 0 for not acknowledge (NACK). Once an acknowledge

decision has been made by the assembly, the I2C controller will ACK or NACK, and then it will release

the SCL causing the clock to stop stretching.

 Appendix A: Gantt Chart

 F
ig

ur
e

A.
1.

 T
he

 G
an

tt
 c

ha
rt

 o
ut

lin
in

g
te

am
’s

 ta
sk

s a
nd

 th
ei

r d
at

es
.

Appendix B: UML Statecharts

 Figure B.1. UML statechart for SCOMP state machine.

 Figure B.2. UML statechart for I2C state machine.

Appendix C: Schematic of I2C Controller Implementation

Figure C.1. Circuit schematic showing all the pin assignments and connections between all the devices used in the

implementation of the karaoke machine, namely, the I2C controller, the SCOMP, the LEDs , the keys and the switches.

