Design Report: Karaoke Machine implemented on the
DE2 Board Using SCOMP and the Wolfson Audio
Codec

Patrick Dillon
Sahil Gupta
Eric Patterson
Josh Stirnemann
Prahlad Venkatesh

ECE 2031, Digital Design Lab
Section L06
Spring 2012

Submitted
24 April 2012

Georgia Institute of Technology
School of Electrical and Computer Engineering

Executive Summary

This report describes the solution for implementing a karaoke machine using a simple computer
(SCOMP), Wolfson WM8731 audio codec and an I°C controller on a DE2 board. I°C controller was
written in VHDL which helped in managing the data between SCOMP, the audio codec and several other
peripheral devices. For this project, the seven peripheral devices used were switches, pushbuttons, LEDs,
LCD screen, microphone, speaker and an iPod. I°C controller sends two bytes of data when writing and
receives one byte of data when reading. It sends 8-bit commands to any 7-bit addresses on 1°C bus. It
responds to the in and out commands of the SCOMP. An assembly program was written and downloaded
to the DE2 board to control the audio codec and all the peripheral devices. This assembly program
consisted of four main states, namely, Audiolnit, HandleButtons, HandleSwitches, and HandleState.
Audiolnit takes care of the initializing the settings of the audio codec, HandleButtons and
HandleSwitches manage the user response of the pushbuttons and the switches respectively, and
HandleState ensures correct transition between the states. This execution provides a robust design that
allows the user to easily communicate to other I°C enabled devices for future enhancements. The future
work which the team wants to do with the current project includes ideas such as integrating the video
codec to display the song lyrics and visual backgrounds, adding clock synchronization and playing music
from a memory card or USB storage. Moreover, the main advantage of this implementation is
discretization of fades and preventing the blocking of the user. It also allows state transition to stop in the
middle of the fade. The design met all the requirements of the project and was very successful during the

demonstration.

Design Report: Karaoke Machine implemented on the
DE2 Board Using SCOMP and the Wolfson Audio
Codec

1.0 Introduction

This report explains a solution to the implementation of a karaoke machine on the DE2 board using the
I°C controller, the SCOMP and the audio codec. The I°C controller and the SCOMP were written in
VHDL and downloaded to the DE2 board. The I°C controller facilitates data exchange between the
SCOMP and the audio codec. The audio codec and all the peripheral devices were controlled by an

assembly program downloaded to the DE2 board.

1.1 Problem Description

The goal of this project is to design a general-purpose 1°C controller with a standard Simple
Computer (SCOMP) I/O interface and to establish communication between the SCOMP and the Wolfson

WMB8731 audio codec. The following were the requirements to achieve the project goal:

1.1.1 1°C Controller

e Responds to standard 1/0 commands (IN, OUT) at one or more 10 address beginning at 0x10.
e Sends arbitrary 8-bit commands to arbitrary 7-bit addresses on the I°C bus.
e Sends write commands from the SCOMP.

e Reads and relays a response from the SCOMP to the I°C enabled device.

1.1.2 Audio Codec

e The I°C controller should communicate with the audio codec chip on the DE2 board midway

through the project.

e Develop a user interface using several peripheral devices on the DE2 board such as seven
segment displays, LCD screen, LEDs, pushbuttons, etc.
e Create a demonstration SCOMP program using assembly to achieve the above requirements.

o Develop a specific application of the audio codec to meet all the requirements.

1.2 Design Solution

To meet all the above requirements, the team decided to design a karaoke machine on the DE2
board. I°C controller sends two bytes of data when writing and receives one byte of data when reading. It
sends 8-bit commands to any 7-bit addresses on 1°C bus. It responds to the in and out commands of the
SCOMP. For this project, the seven peripheral devices used were switches, pushbuttons, LEDs, LCD
screen, microphone, speaker and an iPod. An assembly program was written and downloaded to the DE2
board to control the audio codec and all the peripheral devices. This assembly program consisted of four
main states, namely, Audiolnit, HandleButtons, HandleSwitches, and HandleState. Audiolnit takes care
of the initialization of the settings of the audio codec, HandleButtons and HandleSwitches manage the
user response of the pushbuttons and the switches respectively, and HandleState ensures correct transition
between the states.

The design met all the requirements of the project and was very successful during the

demonstration.

The controller will regulate the information being passed between the SCOMP and the I°C
enabled device by using two subroutines, an audio codec and I°C controller driver, which will handle the
address and the different functionalities of each device. The I’C controller will initially start in an ideal
state. Once the controller receives a valid data string, it will decide to go into a sending or receiving state.
When the data transfer is complete, the SCOMP will give instructions to send the information to the audio
codec over the SDA (serial data line). With the SCOMP being the master control device, the speed of the

SCL (serial clock line) is dependent on the initial clock value defined in the SCOMP.

Technical Approach

Proposed Overall Design

To fulfill the goal of the project, several design phases were created to ensure the completion of
each requirement. The team aims to complete a phase prior to moving forward in the design process.
These phases are implemented to yield a highly efficient design; as a result, debugging and executing
each design phase will be easier and independent of other phases. Because a team member is responsible
for the completion of a design phase, the project progression will be optimized due to the minimization of
duplicated work.

The karaoke machine will be implemented by using the I°C controller as the means of
communication between several peripheral devices (LEDs, switches, and push buttons), the SCOMP
programmed in the DE2 board, and the Wolfson WM8731 audio codec integrated on the DE2 board.

Figure 1 provides a graphical representation of the karaoke machine the team will design.

Speaker iPod/Mp3 Player

Microphone

Wolfson WM8731

Audio Codec e DE2 Board

18 red LEDs T

Switches

Figure 1. The setup of the karaoke machine with all the connections between devices shown.

In the port declaration of 12C_Controller.vhd, three standard logic inputs are included to
distinguish different words sent over the 1/0O data bus. These input ports are three individual chip selects,
which are utilized by the 1°C controller for managing state machine transitions and driving the tri-state
buffer. Integer counting within the controller will keep track of the number of bits sent over the I°C bus.

The I°C addresses are seven bit and the data will be sent in one byte.

I°C Controller Design

For the development of the I°C controller, an Altera DE2 board will be programmed with the
Quartus 11 Web Edition software version 9.1 with SP2. The logic and states of the I°C controller will be
written in VHDL due to its compatibility with the Quartus software. This involves the creation of two
state machines - one for the SCOMP to I°C interface and one that sends data over the 1°C bus.

By default, the I°C controller is in an idle state. Therefore, it waits for the address of an I°C
device to communicate with. The I°C controller enters the sending or receiving state of the state machine
depending on whether the eighth bit of the address is a zero (write) or one (read). In the *sending’ state,
the I°C controller waits to send data. If SCL and SDA are both one, it starts sending a byte and in the next
clock cycle, transitions to a send bit state where it will stay for the next seven cycles. After eight bits have
been transferred, it waits for an acknowledge (ACK) from the slave. If the ACK is received, then the state
machine will start transferring the next byte. If there are no bytes left to send, it will send the stop
sequence, and the I°C controller will return to the idle state. If the ACK is not received, then it will
transition back to start sending the byte without proceeding to the next byte to be sent.

If the I°C controller receives a one as the eighth bit of the address in the idle state, then it goes to
the “receiving’ part of the state machine. In this state, the process is similar to that in the ‘sending’ part of
the state machine. The I°C controller start by sending the address of the I°C requested device over the
SDL. Then, it loops while receiving 8 bits from the slave, while controlling the clock. Once an entire byte

is received, the I°C controller will pull the SDA low to acknowledge that the byte was received. Finally,

the 1°C controller sends the stop sequence and stores the received byte in a register to be retrieved by

SCOMP using IN 12C_DATA and transitions to the idle state.
Interaction with Audio Codec

The I°C controller has two bidirectional lines, the Serial Data Line and the Serial Clock Line that
are connected to the audio codec.
For this part, the plan is to create a karaoke machine that receives music from a MP3 player. This task
will be achieved by the usage of the three jacks in the audio codec on the DE2 board, i.e., the line-in, line-
out, and mic-in jacks. The line-in jack will be used as an interface between the MP3 player and the audio
codec. The mic-in jack will be used to send the input of human voice inputs by means of a microphone.
The line-out jack will be used to connect the audio codec to the speakers, so as to have an output for the
sound. There are also pushbuttons that send a signal to reset the sound. Additionally, there is a digital to
analog and analog to digital converter present in the audio codec that will allow for automatic conversion
into the desired format.

The objective is to be able to communicate with the audio codec, i.e., prompt it to start using the
I°C controller. This start state will be accomplished by determining the address of the audio codec and
finding a specific command to set it running from the 1°C controller. Afterwards, the team plans to
program the LEDs and the switches in a way that they can have some sort of impact on the output volume
by utilizing a subroutine. In the subroutine, the use of commands will enable the manipulation of the

output volume like ‘increase volume’, ‘decrease volume’, ‘mute’, etc.

LEDs /. Line - Out

SCOMP I12C Controller Audio e Line - In
Codec
| I \
. Push .
Switches Biittons J Mic -In
Bypass ADCto
DAC
Legend

—— |/O Data(16), Address(8), Control(2)
— Serial Data Line
= Serial Clock Line

Figure 2. 1/0 subsystem showing interconnection of audio codec with 1°C.

SCOMP Program Demonstration

The functionality of the I°C controller will be shown through the demonstration of a karaoke
machine. As mentioned before, this karaoke machine will require a user to attach a microphone, speaker,
and a music player. In the initial state, the karaoke machine will set the volume of the audio output to
zero, waiting for the user to press a button (KEY [0]) before fading-in the volume to 50%. Pressing that
button again will fade the volume back down to 0. The buttons will be checked via polling their
respective 1/O addresses and will be performed continuously in between sending commands to the audio
codec. Commands will be sent to the audio codec using two sets of subroutines. The first set of
subroutines is the audio codec driver. This driver manages the audio codec’s address and the different
functions that can be performed by the audio codec. In order to communicate with the audio codec, the
audio codec driver will use a set of subroutines, which compose the I°C controller driver. The I°C

controller driver consists of the I°C controller’s I/O address, which is a command to set the target I’C

device address, and commands, which perform a send or receive on the 1°C controller. The I°C controller
then transfers or requests the corresponding data using the SDA and SCL lines on the I°C bus.

For the 12C_WRITE subroutine, the accumulator is expected to contain the data that needs to be
sent, and a specific location in memory is expected to hold the address of the 1°C device to send the data
to. The 12C_WRITE subroutine starts by storing the data it needs to send. It then loads the address of the
I°C device, sets the write bit, and sends the address to the I°C controller using OUT 12C_ADDR. Next,
the subroutine loads the data to send back into the accumulator and executes OUT 12C_DATA. Finally, it
enters a loop, where it waits for IN 12C_TEST to input 0 into the accumulator before returning.

The 12C_READ subroutine expects the address of the I°C device be in the accumulator. It starts by
sending the address to the I°C controller using OUT 12C_ADDR. It then waits, by checking if IN
I2C_TEST sets the accumulator to 0, for the I°C controller to enter the IDLE state which means the data

has been sent successfully before returning.

Management Plan

Appendix A contains a Gantt chart that provides a visual representation of the team’s project

schedule.

Contingency Plan

In the event that the I°C controller needs to be able to enter a slave mode, the I°C controller’s
state machine will be adapted to contain a slave state, where it will buffer any incoming data and operate
based on the clock the master device drives over the SCL. Once the buffer is full, the I°C controller will
stretch the clock by holding SCL low until SCOMP has received the data using the assembly instruction
IN I2C_CONTROLLER. If the option to request that a byte be resent is desired, then it will be
unnecessary for the I°C controller to have a buffer. After receiving a byte, the I°C controller would stretch
the clock either before or after the master pulses the SCL to read the ACK. The I’C controller has no

ability to check whether the data received is correct, so it would have to wait for the assembly to read in

the data received over the I°C bus, check the data, and send a new command, OUT I2C_ACK, back to the
I°C controller. The OUT 12C_ACK command sends the value in the accumulator to the I°C controller and
would be expected to be 1 for acknowledge and 0 for not acknowledge (NACK). Once an acknowledge
decision has been made by the assembly, the I°C controller will ACK or NACK, and then it will release

the SCL causing the clock to stop stretching.

Appendix A: Gantt Chart

"S91ep JI9Y} pue SySe} s,weal Sululjano 1eyd 13ues ay| "Iy a4nsi4

Tadey
E— ssalouy 1 AJug-Lerg Aug-uanemng SUGED||W MNXY| EE—— SYSEL [BUIFIKT * AN
t UL CT T S———— ARG [Enuely CE—— AEEL [EnLR ELTEL BT e e - il i
wanse wey nued TE0Z oy
C AUD-UR|S e—)0y A LILING [EDUELY & AR LWNG BALIEY| & |1 U g, A ARG EE——— Al

oy Wedlay uiwang 77T a5

- WAL apduid TET i

=] vodey v 2T Br

vify LQANOS LHISE] AUEsALY e

v & uopEuasaud sop sYnsas LEIS0 TOT i

owag ufisag palad o1 | Frd

i £ o3 amw UoREjUasaL] AINR.Y I°0 T

sl —— vy JUNUC -..t__.wtc_c_ru—_ 'n £

uoneuasdlg Jedald fad

P JTY wipifosd awnesy e T

WALEER | o

L1y ET—— BpoT Wse' ppy E'E'e 68

APOD [PUA PPV TR BE

wieHoid dNOds acpdn 28 2E

e B% o ApSdnu oy soy LR SE

v B0 o PARRY 20 01 SPAAN UM T'T'B 14

—— F5920ud RENEAT T fE

wefold uljsea JNODE 8 g

vifp A wiee Fpwndn 28 Fa3

Iy S—— e Bswndn T L3

— ufisag aaoudw £ gg

o Awloug owig 9 6z

Bl ESmm— IVQIITISY] PUR SSUPRY PRY 1S 4

o J3pa] alpnYy 03 Ja]|0auaY 3| apa) 25 LL

£l D —— 3 i wiefoyy we dojana TS st

£fp EORIRRSS Y [|l Pyn dojaReq T'T'S SE

& & SUMOIIINISU] 21 01 DS FP00 TS vz

Bupon 13304 5 i

5l Emm———g |y, vy paugag gy I

by D 1, Qo pUE AJBLIWNG BRIMIERT EY | T2

2/t Em— ey ueld wawaieuey Ty oz

esodoug wiSsag e wL

L/ De— g e TR DT 0N SO TN TTE Bl

L&/; EPmMm——— o o AB|0AE0T I 0 AWDDS TEE i

Bt yaedeaeq dojanag 2'E a1

gz/e O mzfe wEsag wesded JN0DS BRseded TE | a1

a——— Bujuucasujeig 139f0ud £ | Tl

s/c O gy e 5300 paseys dnaas v 119

sz/c DY gy sepuBle) paieys dnaRs £7 | 1

wefe O e Lo B 3R] pEUEYINY 2 T

wefe 070 mefe UL ENouE [T ar

ro—— 515] 807 dnous 7 &

r2ie B gz TELANM UOSHOM PRRY £2°T 2

gzj¢ DTy EnUE Z3AFRRHTTT :

2/t BT gz Jpd§ pieog ZIQ PERHTTT [

— HP0] OIS UMD MINTY 27T s

Lefg Do — S0 21 PUad 2L ¥

L1fe Eemem— e Whiow 3 321 prad U170 £

AB)|OAMOD DT MAPRY T 2

)) . . .)))))))) . - - = unpewev) Rafold majaey L

L s [F T m [w [s I [1 [s T3 [m | W [s L1 [T ™ W [s | L [L [s [4 [m [W |

€k by [[T €L | i ChEEEN CLHL (33 BWERHEL ql

Appendix B: UML Statecharts

SCOMP STATE MACHINE
RESETN

DATA_16

DATA_S

\ 12C_DATA_O

L\ FETCH_DATA

.

L1
FETCH_DATA,

FETCH_STATEC

Hardware input ports are
DATA_16, DATA_S,
ADDR, and TEST on
12C_Controller.vhd.

| DATA_WORD_STATE

12C_DATA_1

FETCH_DATA <= DATA_8 AND
NOT WR;

2 ADDR_SIG <= ADDR AND WR;
DATA_BYTE_STATE =

IF (DATA_16 = ‘1" AND SCOMP_STATE = IDLE) THEN
FROMSCOMP <= IO_DATA; END IF;

IF (DATA_8 = "1 AND SCOMP_STATE = IDLE)

FROMSCOMP(7 DOWNTO 0) <= 10_DATA(7 DOWNTO 0};
12C_ACK_RECV | READY END IF;
IF (FETCH_DATA = “1" AND SCOMP_STATE = READY)
TOCOMP <= FROMI2C; END IF;
ADDR_SIG SCOMP_STATE <= IDLE;
St /'\ TESTING 12C
e Controller
—— e <y

SCOMP_STATE

IDLE
DATA_WORD_STATE
DATA_BYTE_STATE
FETCH_STATE

READY

ADDR

SCOMP_STATE MOORE OUTPUTS

Maoore Output

SCOMP_IDLE<="1"; {OTHERS SCOMP_IDLE <= ‘0";}
DATA_WORD <= ‘1";,{OTHERS DATA_WORD <= ‘0";}
DATA_BYTE <="1";{OTHERS DATA_BYTE <= 0";)

FETCH <="1";(OTHERS FETCH <=‘0";)

ADDRI2C <= 10_DATA(7 DOWNTO 0};

END PATH

START PATH

Figure B.1. UML

statechart for SCOMP state machine.

‘ ADDRESS \
\
\

|

TEST_SIG

If(TEST = ‘1)
TOSCOMP<=
STATUS_WORD;

TEST_SIG<=TEST
AND NOT WR;

12C STATE MACHINE
RESETN

DATA_WORD OR DATA_BYTE OR FETCH

SDA AND SCL

START_1

| DATA_R |

COUNT_0 : _|

COUNT_N_O
FETCH AND ACK

ACK_RECV

ALWAYS

STOP_1

ALWAYS
COUNT_N_0
ALWAYS
ADDR
FETCH
DATA_BYTE AND ACK
DATA_WORD AND ACK:
COUNT_O
DATA_O
) — COUNT_7 COUNT_N_7 COUNT_N_D
ACK_SEND
—] COUNT O
|
SCOMP_IDLE

Figure B.2. UML statechart for I°C state machine.

Appendix C: Schematic of 1°C Controller Implementation

alipllt "
o T
e 2 all
l P a3 Moni Ol
iﬁ‘ locked BrErt
; et ol i | o [
v
£z R . L
Lok - Tywane |
G
FI_NEL
TR
TS
FR_H26 " [k
PN
PR_PL o]
T o]
o 10_DATAM, 4
(] - :
UL .
B P25 :
N,) x
10_naTAs | e
PR_AFZ3
e . T AATY
IO, WRITE W
| L ALY
i PR_AF1E
N e e PH_AF1L
=T TErS FH_AETT
. PH_ALZT
LECEN P LECqeR 0] B (R
. ol fp - S .
Sy 2]
o
THIER
TN . g1ea n
R S0tk 12_BATALE 2] R
TIMER_EX 4 T i .
T 2 Leam
e +| 10 e Lt =
i |
e s
. e
VT
P_VE 10 DATA 1
|

_in_pata? fi

T

reserk[|| |™

e

i 10_BATA(L 41
L val3 0] swgrantsf,
reesth tm
SWITCH_EN -
N 3
TIMER_EM waid?
oi6_IN_EN
HEX EN
LSDEN
122 ADDA . it LoD RS
i DATAE LCOERA ST | leeeem
W DaTA_18 o) PTRRI
125 _TEST = W (AT 8 LECDTTD]
vl
R_DI_EM
A_POBLOW_EN
R_POSHIZH_EN
RVEL_EN
LT, fr [FOrCE = =
BSMAR_EN 12C Contraller Img an
[CORrERY
) Dagital Design Laboratory
== Toam HIGH 7
T 00 R A
T e AptsI Az [4 T

Figure C.1. Circuit schematic showing all the pin assignments and connections between all the devices used in the

implementation of the karaoke machine, namely, the I°C controller, the SCOMP, the LEDs , the keys and the switches.

